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Вопросы микробиологической деградации лигнина, тесно связанные с
решением ряда важных теоретических и практических проблем, в послед-
ние годы привлекают пристальное внимание исследователей. В статье дан
анализ последних работ Б ЭТОМ направлении. Особое внимание уделено
критическому рассмотрению гипотез о возможных путях микробиологиче-
ской деградации лигнина.

Настоящий обзор является первой в отечественной литературе попыт-
кой обобщения данных, относящихся к проблеме микробиологической
деструкции лигнина.
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I. ВВЕДЕНИЕ

Микробиологическая деградация растительных материалов, важной
составной частью которых является лигнин, играет существенную роль
в кругообороте углерода в природе. За последние 10—15 лет широкое
развитие получили исследования деструкции лигнина в результате воз-
действия микроорганизмов '~14, которая в значительной степени отлича-
ется от деструкции других растительных компонентов. Эти исследова-
ния тесно связаны с работами в ряде важных направлений, из которых
следует отметить: 1) гумусообразование и проблема плодородия почвы
(см. обзоры1 2·1 5-1 7); 2) образование торфа и каменного угля; 3) кон-
сервация древесины при хранении (см. обзор 1 3 ) ; 4) возможность исполь-
зования пораженной грибами древесины; 5) метаболизм растений людь-
ми и животными; 6) использование мицелия гриба для накопления бел-
ковых продуктов; 7) делигнификация растительного сырья с целью
разработки рациональных методов получения целлюлозы; 8) устранение
загрязнения водоемов лигнинсодержащими отходами (см. обзоры 1 9 ' 2 0).

Нет необходимости говорить о большом научном и практическом
значении перечисленных исследований. Кроме того, в последнее время
з результате исследования микробиологической деструкции лигнина по-
лучена ценная информация о его строении, что позволяет рассматривать
микробиологическое воздействие в качестве одного из перспективных
методов исследования лигнина.

Несмотря на важность указанных работ, в последней монографии
по химии лигнина21 вопросам его микробиологической деструкции уде-
лено неоправданно мало внимания. Более того, в отечественной химиче-
ской литературе отсутствуют обзоры по этому направлению науки.
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В связи с обширностью и разнообразием материала здесь не могут
быть рассмотрены все указанные аспекты микробиологической деграда-
ции лигнина. Основное внимание в последующем изложении будет уде-
лено тем исследованиям, которые привели к получению информации о
строении природного, т. е. из изолированного из растительной ткани
лигнина.

II. ДЕРЕВОРАЗРУШАЮЩИЕ ГРИБЫ

В связи с тем, что задачи настоящего обзора ограничены анализом
результатов исследований микробиологической деградации лигнина,
имевших значение для установления его строения, из различных биоло-
гических агентов, вызывающих разрушение лигнина (дереворазрушаю-
щие грибы, микроорганизмы почвы и воды, кишечные бактерии), будут
рассмотрены лишь дереворазрушающие грибы, действие которых на
древесину, лигнин и его модельные соединения достаточно широко
изучено.

Большинство грибов, вызывающих гниение древесины, относится к
одному из классов высших грибов — базидиомицетам (Basidiomycetes),
имеются также некоторые дереворазрушающие грибы, относящиеся к
классу аскомицетов (Ascomycetes). Различают два основных типа дере-
воразрушающих грибов, обозначаемых обычно как 'бурая гниль и белая
гниль. При поражении древесины бурой гнилью преимущественно раз-
рушаются целлюлоза и другие углеводные компоненты, в то время как
лигнин сохраняется в относительно неизменном состоянии и гниющая
древесина приобретает коричневый цвет. При поражении белой гнилью
разрушению подвергаются все компоненты древесины и по мере гниения
остаток становится более светлым по сравнению со здоровой древеси-
ной. Список видов грибов, относящихся ж этим двум группам, приведен
в работах ' · 2 2 , кроме того, в обзоре Ноблес23 дана подробная характе-
ристика 126 видов дереворазрушающих грибов.

В 1928 г. Бавендамм24 обнаружил, что грибы белой гнили при куль-
тивировании на агаровой среде, содержащей галловую или танниновую
кислоты, продуцируют темноокрашенную зону вокруг и внизу мицели-
альных пленок, в то время как грибы бурой гнили не образуют окра-
шенной зоны. Эта реакция, получившая название реакции Бавендамма,
позднее широко использовалась для отнесения разрушающих древесину
грибов. Бавендамм связывал способность грибов деградировать лигнин
с продуцированием фенолоксидазы. Этот вывод нашел подтверждение
в результате исследования Девидсона и сотр.25, которые испытали
210 видов дереворазрушающих грибов на реакцию Бавендамма и уста-
новили, что 96% грибов белой гнили продуцировали окрашенные зоны,
а 80% грибов бурой гнили не давали их.

Значительное число исследований23> 26~31 было посвящено определе-
нию ферментов, катализирующих окисление простых фенольных соеди-
нений до хинонов, которые полимеризуются, образуя окрашенные комп-
лексы в пробе Бавендамма. Отмечалось, что ферментами, ответствен-
ными за эту реакцию, является лакказа * 27~29; тирозиназа ** 28>29 и
пероксидаза *** 31, однако полной определенности в этом вопросе пока
нет.

Следует отметить, что до сих пор не проводилось систематических
исследований ферментов дереворазрушающих грибов. Имеющиеся в ли-

* Ог : /7-дифенол — оксидоредуктаза (р-дифенолоксидаза), КФ 1.10.3.2.
* Ог о-дифенол — оксидоредуктаза (о-дифенолоксидаза), КФ 1.10.3.1.

*** Донор : Н2О2 — оксидоредуктаза, КФ 1.11.1.7.
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тературе сведения носят общий характер и часто противоречивы. Иссле-
дования, проведенные в этом направлении, подробно рассмотрены в мо-
нографиях Шуберта7 и Шивриной32. Установлено, что грибы белой гни-
ли продуцируют два основных фермента: лакказу и тирозиназу. Кроме
того, Лир показал, что 14 из 182 исследованных видов дереворазрушаю-
щих грибов продуцируют пероксидазу33 и предложил метод ее обнару-
жения34. Указанные ферменты катализируют отщепление электронов от
фенольных субстратов. В случае лакказы и пероксидазы от субстрата
удаляется один восстановительный эквивалент, а в случае тирозиназы—
•одновременно два восстановительных эквивалента.

Поскольку разрушающие лигнин грибы белой гнили в большинстве
случаев продуцируют внеклеточные фенолокисляющие ферменты, в то
В|ремя как таксономически родственные им грибы бурой гнили, не проду-
цирующие этих ферментов, не разрушают лигнин, представлялась оче-
видной связь между способностью деградировать лигнин и фенолокси-
дазной активностью дереворазрушающих грибов23·3l· 3S~". Однако в
последнее время показано, что грибы бурой гнили продуцируют внутри-
клеточные фенолокисляющие ферменты: тирозиназу и фермент лаиказ-
ного типа38~43, а также пероксидазу44. Кроме того, имеются указа-
ния4 5"5 0, что деградация лигнина вызывается ферментами, не являющи-
мися фенолоксидазами. В связи с этим Кирк и Келлман51 предприняли
исследование 18 различных грибов белой и бурой гнили на способность
деградировать лигнин и продуцировать внеклеточную фенолоксидазу,
способную окислять простые фенольные соединения. Среди исследован-
ных видов грибов были «типичные» и «нетипичные» грибы белой и бу-
рой гнили. Результаты проведенного исследования показали, что неспо-
собность дереворазрушающих грибов окислять фенолы в агаровой среде
нельзя принимать за доказательство невозможности утилизировать
лигнин.

Таким образом, до настоящего времени роль фенолоксидаз в биоде-
градации лигнина остается неопределенной. Результаты рассмотренных
выше исследований " · 4 3 · 4 4 · 5 1 свидетельствуют о том, что как деструкти-
рующие лигнин грибы белой гнили, так и не разрушающие лигнин гри-
бы бурой гнили продуцируют фенолокисляющие ферменты, причем не-
которые грибы бурой гнили выделяют больше фенолоксидаз, чем неко-
торые грибы белой гнили. Исходя из этого можно заключить, что если
фенолокислякжцие ферменты грибов белой гнили не действуют на лиг-
нин иначе, чем фенолокисляющие ферменты грибов бурой гнили, то ука-
занные различия в способности обоих групп грибов деструктироватъ
лигнин могут зависеть от наличия некоторых других энзиматических
систем.

Результаты микроскопических исследований 52~58 показали, что мик-
робиологическое разрушение древесной ткани начинается с люменов
клеток, в которых локализуются гифы грибов, и распространяется к
району срединной пластинки. В частности, Шмид и Лиезе5 7 в ходе элек-
тронномикроскопического анализа установили, что древесное вещество
удаляется по существу послойно и это вызывает постепенное утоныпе-
ние клеточных стенок. В то же время лигнин в срединной пластинке и в
углах клеток, по-видимому, относительно устойчив к энзиматической
атаке. С другой стороны, Вилкокс58 установил, что действие целлоли-
тических ферментов гриба белой гнили Polyporus versicolor первона-
чально ограничено поверхностями клеточных стенок, соседних с люме-
ном, а затем по мере удаления целлюлозы последовательно распростра-
няется на другие слои клеточной стенки. В то же время целлолитиче-
окие ферменты гриба бурой гнили Poria monticola и лигнинразрушаю-

12 Успехи химии, № 5
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щие ферменты грибов белой гнили способны проникать и действовать
внутри клеточной стенки. Эти различия в целлолитических ферментах
автор связывал с их молекулярным размером и химическими свой-
ствами. ,

Следует отметить, что хотя основные закономерности разрушения η
древесины различными видами грибов бурой гнили являются общими,
однако в действии каждого вида имеются особенности, обусловленные
•различной ферментативной активностью59. Это определяет различия з
скорости разрушения древесины различными видами грибов бурой.
гнили.

III. ПРЕВРАЩЕНИЯ ПРИРОДНОГО И ИЗОЛИРОВАННЫХ ЛИГНИНОВ
ПОД ДЕЙСТВИЕМ ДЕРЕВОРАЗРУШАЮЩИХ ГРИБОВ

Исследования изменений лигнина под действием дереворазрушаю-
щих грибов проводились либо на препаратах, выделенных после инку-
бации различных изолированных лигнинов с грибами белой гнили в
синтетических жидких «ультуральных средах, либо на препаратах,
экстрагированных нейтральными растворителями из древесины, под-
вергшейся действию белой гнили. В большинстве случаев препараты,
выделенные из жидких .культуральных сред и из подвергшейся гниению
древесины, претерпевают аналогичные изменения по сравнению с исход-
ным контрольным лигнином (ср. табл. 1 и 2) и поэтому могут рассмат-
риваться одновременно. Следует однако иметь в виду13, что 1) регене-
рация и очистка препаратов после инкубации изолированных лигнинов
с микроорганизмами может привести « ряду дополнительных изменений
и 2) лигнин, выделенный из подвергшейся гниению древесины, может ^
отличаться от контрольного препарата не только вследствие изменений,
вызываемых действием грибов, но и за счет метода выделения, который
обычно отличается от метода выделения контрольного препарата.

В результате исследования действия на еловую древесину различных
грибов бурой гнили установлено, что нитробензольное окисление разру-
шенной древесины дает более низкий выход ванилина по сравнению со
здоровой древесиной60. Леопольд61 провел исследование продуктов нит-
робензольного окисления древесины на различных стадиях ее разруше-
ния грибами бурой гнили и наблюдал последовательное уменьшение их
выхода, хотя продукты окисления содержали те же альдегиды и прак-
тически (в той же пропорции, что и продукты окисления здоровой древе-
сины. По мнению автора, уменьшение выхода ванилина связано с пред-
почтительной энзиматичеокой атакой на «открытые», т. е. неконденси-
рованные в положении 5 ароматического ядра, структуры лигнина,
которые являются основным источником ванилина при нитробензольном
окислении. Уменьшение выхода ванилина при нитробензольном окисле-
нии сосновой древесины, разрушенной грибами бурой гнили, отмечалось
также Энквистом и сотр.62

Хигучи и сотр.63 исследовали препараты лигнина, выделенные из
древесины бука, подвергнутой действию различных грибов бурой и бе-
лой гнили в течение 5 месяцев. Авторы установили, что суммарный вы-
ход альдегидов при нитробензольном окислении пораженной гнилью
древесины ниже, чем в случае здоровой древесины, причем этот выход,
считая на лигнин, ниже для древесины, подвергшейся действию грибов
•белой гнили, чем для древесины, подвергшейся действию грибов бурой
гнили. Кроме того, в пораженной гнилью древесине по сравнению со
здоровой наблюдается увеличение молекулярного соотношения сирене- i
кого альдегида к ванилину в продуктах нитробензального окисления. «



Микробиологическая деградация лигнина 939

На уменьшение выхода ванилина при нитробензольном окислении
изолированных лигнинов, подвергнутых действию грибов белой гнили,,
указывают также Ишикава, Шуберт и Норд6 4. Авторы исследовали
изменения выделенных из древесины сосны и ели нативного лигнина
Браунса и лигнина механического размола (ЛМР) в результате их ин-
кубации с грибами белой гнили. В этих экспериментах было исследова-
но действие как «богатых фенолоксидазой» (Polyporus hirsutus, Polypo-
rus versicolor и Poria subacida J247), так и «бедных фенолоксидазой»
(Poria subacida N199, Fomes fomentarius, Fomes annosus и Trametes
pini) грибов белой гнили. Установлено, что деструкция лигнина грибами
белой гнили приводит к уменьшению количества метоксильных групп и
увеличению содержания общих и фенольных гидроксильных, карбо-
нильных и карбоксильных групп (табл. 1).

ТАБЛИЦА 1

Результаты аналитического исследования исходных и подвергшихся действию грибов
белой гнили лигнинов * (согласно данным и)

Лигиин

Сосновый ЛМР
То же

»

Сосновый на-
тивный лиг-
нин

То же
»

Вид гриба

Контроль
Fomes fomentarius
Polyporus versico-

lor

Контроль

-
Fomes fomentarius
Polyporus versico-

lor

Выход,

77,0
61,8

73,5
55,2

с

63
61
61

63

64,
61,

Содержание, %

70
55
41

85

00
98

6
5
6

6

6
6

и

,29
,77
,11

,22

,23
08

OCI-

15,
14,
10,

14,

12,
9,

Ιι

5
1
1

5

1
6

Содержание, моли на
звено лигнина

ОН

0,
0,
0,

0,

0,
0,

24
30
32

32

40
33

с мол.
весом 180

СО

0
0
0

о

0,
0

20
27
23

24

28
20

СООН

0,024
0,106
0,130

0,022

0,125
0,150

Выход
ванили

на, %

20,0
15,1
11,0

22,6

13,6
10,4

• Культуральные условия синтетическая жидкая среда, содержащая 1% лигнина; 26—29°; 13 суток

При исследовании ИК-спектров лигнина, подвергшегося действию
грибов белой гнили, обнаружено увеличение абсорбции — 1670 см~\
Это увеличение связывалось с накоплением в лигнине конъюгированных
карбонильных и (или) конъюгированных карбоксильных групп. Другие
исследователи65"67 отмечали, что в результате фунгиальной атаки уси-
ливается абсорбция в области 1710—1735 см~\ Эта полоса также отне-
сена к конъюгированным карбонильным и (или) карбоксильным
группам.

Ишикава и Оки6 8 показали, что еловый «ативный лигнин под дейст-
вием Н2О2 и очищенных препаратов пероксидазы, выделенных из хрена,
редьки и комков мицелия СоИуЫа velutipes N8, претерпевают .измене-
ния, аналогичные рассмотренным выше, за исключением того, что со-
держание метоксильных групп остается постоянным.

Ишикава и Оки6α исследовали изменения, претерпеваемые этанол-
лигнином из японского кедра под действием очищенного ферментного
раствора, полученного из, комков мицелия или свободных от мицелия
культуральных фильтратов Collybia velutipes N8 и Polyporus versicolor.
Установлено, что энзиматический гидролиз этанол-лигнина приводит
почти к количественному отщеплению этохсильных групп с одновремен-
ным увеличением количества спиртовых ОН-групп и к незначительному
увеличению содержания фенольных гидроксилов. Изменений в ИК- и
УФ-спектрах в результате энзиматического воздействия «е иаблюда-

12*
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лось. Одновременно исследовано превращение ряда ароматических
эфирных соединений под действием очищенного ферментного раствора
(результаты рассмотрены в разд. V). Полученные данные позволили
авторам заключить, что во время фунгиальной атаки энзиматически
гидролизуются алкилалкильные и алкиларидные эфирные связи в
этанол-лигнине.

ТАБЛИЦА 2

Результаты аналитического исследования елового ЛМР и препаратов лигнина,
экстрагированных из еловой древесины, подвергнутой действию P. subacida

(согласно данным66)

Препарат

ЛМР
ДЛ-1*
ДЛ-И **

дл-ш ***

Выход, % от
лигнина разру-
шенной древе-

сины

1,1
2,7

Содержание, %

С

62,81
60,44
58,54
55,01

н

5,88
5,67
5,23
4,98

осн,

15,24
12,32
11,75
9,69

Содержание, моли на звено лигнина с мол
весом 180

о н о 6 щ . | о н ф е н .

1,18
1,42
1,67

0,25
0,30
0,40

со

0,14
0,21
0,28
0,30

соон

0,017
0,053
0,106
0,113

ТАБЛИЦА 3

Выход продуктов нитробензольного
окисления (% от лигнина)

(согласно данным β β)

* Лигнин, экстрагированный смесью ацетон—вода из древесины, подвергнутой действию P. subacida
в течение 3 месяцев.

** Лигнин, экстрагированный смесью ацетон—вода из древесины, подвергнутой действию P. subacida
в течение 6 месяцев.

* · * Лигнин, экстрагированный водой из древесины, подвергнутой действию P. subacida в течение 6 ме-
сяцев.

Фукузуми ™ на основании результатов УФ- и ИК-спектрального ис-
сле:до1вания «ативного лигнина ели и лигнина, экстрагированного ацето-
ном из еловой древесной муки, подвергнутой действию Poria subacida,
пришел к выводу о значительном увеличении карбонильных групп в
лигнине, подвергшемся энзиматическому воздействию. Хата6 в исследо-

вал препараты лигнина, экстрагирован-
ные из еловой древесины, подвергшейся
действию Poria subacida BII. По сравне-
нию с еловым ЛМР выделенные препара-
ты содержали меньше метоксильных
групп и больше фенольных гидроксиль-
ных, карбонильных и карбоксильных
групп (табл. 2). Кроме того, установлено,
что в результате энзиматического воздей-
ствия в лигнине уменьшается количество
кониферилальдегидных и гваяцилкарби-
нольных групп. При нитробензольном
окислении деструктированных лигнинов
образуется меньше ванилина и больше
ванилиновой кислоты (по сравнению с

еловым ЛМР), причем по мере увеличения продолжительности энзима-
тического воздействия эта тенденция усиливается (табл. 3). Однако
суммарный выход этих продуктов из деструктированного лигнина ниже,
чем из ЛМР. При гидролизе смесью диоксан — вода (180°, 50 мин. и
140°, 60 мин.) деструктированныи лигнин по сравнению с ЛМР дает зна-
чительно больше ванилиновой кислоты и меньше кониферилового спир-
та, кониферилового альдегида и ванилина. Кроме того, образуется очень
небольшое количество феруловой кислоты, не обнаруживаемой в про-
дуктах гидролиза ЛМР. Исследование свободных радикалов в ЛМР
и деструктированных лигнинах показало, что их количество примерно
одинаково, но они относятся к различным типам.

Препарат

Еловый ЛМР
ДЛ-1*
ДЛ-П **

Ванилиновая
кислота

2,2
4,8
6,7

Ванилин

24,1
14,9
10,2

* Обозначения препаратов те же, что
в табл. 2.
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Коииши и Иноуе7 1"7 4 показали, что ферменты, продуцируемые в
культуральных фильтратах грибом Coriolus versicolor переводят ЛМР,
выделенный из заболони японской .криптомерии, в водорастворимое со-
стояние без .существенного изменения его молекулярного веса, однако
не разрушают лигнин до низкомолекулярных соединений. По сравнению
с исходным ЛМР в водорастворимом лигнине содержится больше
СООН-групп и меньше спиртовых ОН-групп. Отмеченные изменения
приписаны энзиматической атаке на боковые цепи фенилпропановых
звеньев лигнина, которая, очевидно, протекает посредством радикальной
реакции.

Стилинк75·76 установил, что воздействие на древесину грибов бурой
или белой гнили в 2—3 раза увеличивает содержание в ней свободных
радикалов, причем для подвергшейся фунгиальной атаке древесины
лиственных пород характерна более высокая концентрация свободных
радикалов по сравнению с древесиной хвойных. Эти данные нашли под-
тверждение в результате исследования, проведенного Крейцберг и
соавт."

Ферм и соавт.78 исследовали превращения ЛМР из ликвидамбара
под действием частично очищенных препаратов пероксидазы хрена и
лакказы из Polyporus versicolor, а также неочищенного фермента из
гриба бурой гнили Poria cocos. Эксперименты по знзиматическому окис-
лению лигнина проводили в смеси метилцеллозольв— вода, которая
является растворителем для ЛМР и незначительно влияет на стабиль-
ность использованных ферментных препаратов. Методом спектроскопии
ЭПР показано, что каждый из использованных ферментных препаратов
вызывает образование свободных радикалов, которые относятся к фе-
ноксильному типу. Образование радикалов аналогичного типа наблю-
далось ранее79 при инкубации сирингильных соединений с фенолокис-
ляющими ферментами (см. раздел V). Кроме того, авторы7 8 сообщили
о предварительных результатах исследования изменений молекулярно-
весового распределения лигнина и лигносульфоната под действием фе-
нолокисляющих ферментов. Методом гельпроникающей хроматографии
показано, что фенолокисляющие ферменты вызывают увеличение моле-
кулярного веса. На основании этого авторы высказали предположение,
что фенолокисляющие ферменты могут участвовать на более поздних
стадиях процесса микробиологической деградации, а не в начальных
реакциях деполимеризации.

Ишихара и Миязаки8 0 исследовали изменения в молекулярном весе
кленового ЛМР в результате инкубации с лакказой В, (полученной из
культурального фильтрата Polyporus versicolor, и на основании получен-
ных результатов пришли к выводу, что этот фермент обладает функ-
циями полимеризации и деполимеризации лигнина, причем первая функ-
ция доминирует.

Кирк и Лундквист" провели сравнительное исследование препара-
тов ЛМР, выделенных из здоровой и подвергшейся действию Polyporus
versicolor (потеря веса 32%) заболонной части древесины ликвидамба-
ра. Установлено, что эти препараты не имеют ясно выраженных разли-
чий в отношении элементного состава и содержания ООН3-групп, УФ- и
ИК-спектров, Ае-кривых и кривых молекулярно-весового распределения,
э также состава этоксибензойных кислот, образующихся при деграда-
ции лигнина методом этилирования — окисления " . Полученные резуль-
таты свидетельствуют о том, что лигнин, выделяемый из подвергшейся
гниению древесины методом механического размола (выход 27%), не
претерпевает существенных изменений. Это, однако, не позволяет сде-
лать заключения о степени измененности всего оставшегося в разрушен-
ной древесине лигнина. Тем не менее авторы высказали предположение,



942 О. П. Грушников и О. Н. Антропова

что при разрушении древесины грибом P. versicolor ограниченная часть
лигнина подвергается энзиматическому воздействию и удаляется, преж-
де чем гниение распространяется на другую часть лигнина.

Кирк и Лундквист исследовали также вещества, экстрагированные
из здоровой и подвергшейся гниению древесины смесью бензол — этанол
(2:1) и затем 96%-лым этанолом (выход их составил 3,3 и 3,6% от
древесины соответственно). Полученные в результате гель-фильтрации
на сефадексе G-25 высокомолекулярные (молекулярный вес >400)
фракции (т. н. «экстрактивный лигнин») исследовали методом УФ- и
ИК-спектроскопии. Результаты проведенных экспериментов показали,
что эти препараты относятся к лигнину и позволили обнаружить раз-
личия между экстрактивным лигнином из здоровой и подвергшейся
гниению древесины. В ИК-спектре лигнина, экстрагированного из под-
вергшейся гниению древесины, обнаружена значительная абсорбция при
1730 см~\ Установлено, что эта полоса обусловлена химическими изме-
нениями, вызываемыми действием грибов, а не присутствием нелигнин-
ных примесей. Указанную полосу не удалось точно отнести, хотя авторы
полагают, что абсорбция в этой области может быть связана с неконъ-
югированными карбонильными группами или неконъюгированными
•карбоксильными группами. Интересно отметить, что изменения лигнина,
приводящие к возникновению полосы при 1730 см~1 в его ИК-спектре,
не сопровождаются заметными изменениями в УФ-спектре. Это, очевид-
но, свидетельствует о том, что при энзиматическом воздействии не обра-
зуются в заметном количестве хромофорные системы, спектральные
свойства которых значительно отличаются от свойств первоначально
присутствовавших в лигнине хромофоров (арил-конъюгированные кар-
боксильные группы, арил-конъюгированные карбонильные группы,
р-бензохиноидные остатки и др.).

В последние годы интересные результаты были получены при иссле-
довании лигнина, остающегося после воздействия на древесину грибов
бурой гнили (т. н. энзиматичеоки освобожденный лигнин), методами
окислительной деградации.

Согласно данным ряда исследователей60·62· 82~87, воздействие на лиг-
нин грибов бурой гнили значительно понижает содержание в нем меток-
сильных групп. Кирк и Адлер " · 8 8 предприняли исследование структур-
ных изменений, приводящих к уменьшению содержания ОСН3-гругш.
Авторы исследовали лигнин, энзиматически освобожденный из древеси-
ны ликвидамбара действием гриба бурой гнили Lenzites trabea. Пред-
варительно этилированные препараты лигнина подвергли окислитель-
ной деградации. Образующиеся этоксибензойные кислоты иденти-
фицировали методом газовой хроматографии — масс-спектрометрии.
В продуктах деструкции энзиматически освобожденного лигнина обна-
ружены кислоты (I) и (II), что свидетельствует о наличии в нем о-ди-
фенольных структур (III) и (IV).
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Эти структуры образуются путем фунгиального деметилирования лиг-
диниых звеньев гваяцилового и сирингильного типа соответственно.
Кроме того, Кирк и Адлер подвергли препарат энзиматически освобож-
денного лигнина кипячению с 0,2 Μ раствором НС1 в смеси диоксан —
вода (эта обработка приводит к расщеплению алкиларильных эфирных
связей с образованием фенольных ОН-групп). Последующее этилирова-
ние и окислительная деградация дали более высокие выходы кислот (I)
и (II). Таким образом, при фунгиальной атаке происходит деметилиро-
Бание не только звеньев со свободным фенольным гидроксилом. Однако
нефенольные звенья деметилируются в меньшей степени, чем соответст-
вующие фенольные. Установлено также, что и фенольные, и нефеноль-
иые структуры сирингильного типа деметилируются более интенсивно,
чем соответствующие структуры гваяцилового типа. Предпочтительное
деметилирование звеньев сирингильного типа, очевидно, объясняется
тем, что они имеют две метоксильные группы и в силу этого деметили-
рующая энзиматическая система имеет большую возможность вступить
'в контакт с ними.

Таким образом, Lenzites trabea деметилирует как свободные, так и
этерифицированные звенья гваяцилового и сирингильного типа в лигни-
ие. По мнению авторов "•88, деметилирование может происходить в ре-
зультате прямого окисления метальной группы, которая затем элимини-
руется в виде формальдегида, оставляя свободную фенольную
О Η-группу.

Кирк, Ларссон и Микше89 провели сравнительное исследование ме-
токсилированных ароматических карбоновых кислот, образующихся при
деградации энзим этически освобожденного лигнина и ЛМР ликвидам-
бара' согласно методу90"92. Среди продуктов деградации энзиматически
освобожденного лигнина идентифицированы кислоты (V) и (VI), кото-
рые образуются из структур, гидроксилированных в результате фунги-
ального воздействия. Гидроксилирование происходит в положение орто
по отношению к боковой цепи фенилпропановых звеньев лигнина. Одна-
ко пока неизвестны ни механизм этого -процесса, ни то, какие звенья
лигнина претерпевают гидроксилирование (исходные гваяциловые и си-
рингильные или же вновь образующиеся о-дифенольные).

IV. НИЗКОМОЛЕКУЛЯРНЫЕ ПРОДУКТЬПИИКРОБИОЛОГИЧЕСКОИ
ДЕГРАДАЦИИ ЛИГНИНА

Хендерсон93 показала, что 6-месячная ин-кубация предварительно
•проэкетрагированных еловых и березовых опилок с грибами белой гни-
ли Polystictus versicolor и Trametes pini приводила к освобождению ва-
нилиновой кислоты в первом случае и смеси ванилиновой и сиреневой
кислот — во втором. Хигучи и сотр.63 сообщили о наличии в спирто-бен-
зольном экстракте древесной муки бука, пораженной грибами белой
гнили, кониферилового альдегида, ванилина и сиреневого альдегида.
Фукузуми70 исследовал продукты энзиматической деградации натив-
ного лигнина ели грибом Poria subacida методом хроматографии на бу-
маге и сообщил о наличии 4-окси-З-метоксифенилпировиноградной
кислоты. Кроме того, в ацетоновых и метиленхлоридном экстрактах
еловой древесной муки, разрушенной тем же грибом, обнаружен гвая-
цилглицервн-р-конифериловый эфир и соединение, подобное ванилино-
вой кислоте.

Обширное исследование низкомолекулярных продуктов энзиматиче-
ской деградации лигнина осуществили Ишикава, Шуберт и Норд6 4. Они
подвергли выделенные из древесины сосны и ели препараты нативного
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лигнина (НЛ) и ЛМР инкубации с различными грибами белой гнили
в жидких культуральных средах. Кислые фракции эфирных экстрактов
продуктов деградации лигнина исследовали методом хроматографии на
бумаге. Идентифицированные продукты приведены в табл. 4.

ТАБЛИЦА 4

Низкомолекулярные продукты, образующиеся при действии на сосновый и еловый
лигнин грибов белой гнили* (согласно данным64)

ь о.

#11
S га в
Й- о. Д

1?
Λ СО

<υ а
Εί Β)s σ

Значение R о,с 0,11—
0,12

0,17—
0,18

0,18-
0,19

0,22-
0,24

0,42-
0,44

0,45—
0,47

0,53-
0,55

(?

0,60-
0,61

0,66-
0,68

0,80-
0,82

л** НЛ
ЛМР + + + + + ( ? ) +

R ***НЛ
Б ЛМР

контроль**** + 4-

* Условия: культуральная среда, содержащая 1% лигнина, 27°, 28 дней. Растворитель для хромато-
графии яа бумаге — бутанол. насыщенный 3%-ным аммиаком

*· А — богатые фенолоксидазой виды (Polyporus hirsuius, Polyporus oersicolor и Poria subacida J247)
·** В — бедные фенолоксидазой виды (Poria subacida N199, Fomes fomentarlus, Fomes annosus и Trametes.

pint)
*** Среда без лигнина после деградации грибами групп А или В

Результаты проведенного исследования свидетельствуют о том, что*
феруловая кислота, 4-окси-3-;метоксифениллировиноградная кислота,
гваяцилглицерин и его «онифериловый эфир, по-видимому, более легка
метаболизируются богатыми фенолоксидазой микроорганизмами;
(группа А) по сравнению с другими промежуточными соединениями.
Наличие в продуктах энзиматичеокой деградации лигнина гваяцилгли-
церин-Э-конвферилового эфира, а также образование кониферилового
альдегида, а-оксипропиованилона и ванилоилметилкетона при ацидоли-
зе фенольной фракции продуктов деградации лигнина, по мнению авто-
ров, является доказательством наличия в лигнине гваяцилглицерин-β-
кониферилэфирных звеньев.

Как отмечалось выше, Кирк и Лундквист " экстрагировали здоровую-
и подвергшуюся действию Polyporus versicolor древесину забоданной
части ликвидамбара смесью бензол — этанол (2:1) и затем 96%-ным
этанолом. Экстрагированные продукты подвергли гель-фильтрации на
сефадексе G-25 и полученную низкомолекулярную (мономерную) фрак-
цию разделяли хроматографией на бумаге. В мономерной фракции
экстрактивных веществ из подвергшейся гниению древесины идентифи-
цированы ванилин, сиреневый альдегид, ванилиновая и сиреневая кис-
лоты, конифериловый и синаповый альдегиды. Поскольку те же веще-
ства и примерно в тех же количествах найдены и в экстрактивных про-
дуктах из здоровой древесины, авторы полагают, что их образование
нельзя приписать фунгиальной атаке. Очевидно, образование низкомо-
лекулярных соединений происходит в результате гидролиза во время
гниения, а не в результате разрушения фенилпропановых звеньев лиг-
нина.
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Кирк и Лундквист предприняли попытку обнаружить в мономерной
фракции веществ, экстрагированных из подвергшейся гниению древеси-
ны, гваяцилглицерин, сирингилглицерин и 4-окси-Знметоксифенилпиро-
виноградную кислоту, т. е. те соединения, которые были идентифициро-
ваиы Ишикавой и соавт.64 среди продуктов энзиматической деградации
лигнина. Эти соединения не 'были найдены, что, по мнению Кирка и
Лундквиста, требует внесения корректив в результаты более ранних ис-
следований. Однако, поскольку P. versicolor относится к богатым фенол-
оксидазой видам грибов белой гнили, результаты Кирка и Лундквиста
не противоречат данным Ишикавы и соавт. (см. табл. 4).

Ишихара и Миязаки 80 инкубировали кленовый ЛМР с препаратом
лакказы В, полученным из культурального фильтрата гриба Polyporus
versicolor в течение 4 суток при 30°. Среди низкомолекулярных продук-
тов деградации лигнина идентифицирован 2,6-диметокси-р-бензохинон,
образование которого наблюдалось ранее при энзиматической деграда-
ции ряда модельных соединений94 (см. раздел V).

Антропова и соавт.95 исследовали 548 штаммов дереворазрушающих
грибов, относящихся к различным таксономическим группам *. В этих
экспериментах в качестве единственного источника углерода использо-
вали сульфатный лигнин осины. Результаты хроматографического ис-
следования мономерных продуктов деградации лигнина позволили от-
метить некоторую специфичность в действии исследованных грибов. Так,
в культурах видов Мисог преобладали альдегиды и некоторые кислоты,
в то время как основными продуктами метаболизма грибов видов Tricho-
derma были кетоны, бензойная и ванилиновая кислоты. Виды Aspergil-
lus продуцировали конифериловый альдегид, р-оксибензальдегид, дегид-
родиванилин, кетоны и кислоты, в том числе некоторые кислоты не об-
наруженные у видов Мисог и Trichodernia. В продуктах метаболизма
грибов видов Penicillium и Fussarium обнаружены спирты, отсутство-
вавшие в случае грибов видов Мисог, Trichoderma и Aspergillus, а также
фенолы, некоторые альдегиды, кетоны и кислоты.

В результате изучения лигнинразрушающих свойств микромицетов
выявлено два наиболее активных штамма: Мисог sp. 15157 и Penicillium
sp. 50311, обладающих соответственно лакказной и фенолазной актив-
ностями 96.

При деградации лигнина Мисог sp. 15157 в культуральной жидкости
были обнаружены следующие продукты: />-оксибензойная, бензойная, р-
оксикоричная, ванилиновая, сиреневая, синаповая, протокатеховая, го-
мопротокатеховая, коричная, З-метокси-4-оксифенилпировиноградная и
феруловая кислоты, ванилин, протокатеховый альдегид и ряд неиденти-
фицированных веществ. При определении количественного выхода основ-
ных продуктов распада лигнина р-оксибензойная кислота обнаружена
на 7—12 сутки роста гриба в количестве 0,4%, на 18-е сутки ее выход
достиг 2,0%. Ванилиновая кислота появилась на 7-е сутки в количестве
0,06%, содержание ее постепенно увеличивалось и на 20-е сутки достигло
0,13%, а на 23-и сутки резко возросло и стало равным 3,5%, затем упа-
ло и колебалось в пределах 0,06—0,1%. Сиреневая кислота появилась
только на 28-е сутки в количестве 0,04—0,1%. Выход остальных веществ
колебался в пределах 0,04—0,1 %.

При деградации лигнина Penicillium sp. 50311 в культуральной жид-
кости обнаружены: р-оксибензойная, бензойная, ванилиновая, 3-меток-
си-4-оксифенилпировиноградная и феруловая кислоты, синаповый аль-

* Часть исследованных видов Мисог, Aspergillus и Penicillium являются почвенны-
ми грибами и.неспособны самостоятельно разрушать древесину.
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дегид, ванилиловый спирт, З-оксифенилпропанол-1, гваяцилпропанол-3
и -2, пирогаллол и фенол. В культуральной жидкости постепенно нара-
стало количество ванилиновой кислоты: ее содержание на 10-е сутки со-
ставило 0,09%, достигало максимального уровня на 18-е сутки — 0,89%,
а затем постепенно падало; то же происходило с р-оксибензойной кис-
лотой: на 3-й сутки — 0,06%, а на 30-е сутки — 0,5%, затем ее содержа-
ние уменьшалось. Сиреневая кислота на 30-е сутки достигла максималь-
ного количества — 3,5%, а затем ее содержание падало до 0,067ο.

V. МИКРОБИОЛОГИЧЕСКАЯ ДЕГРАДАЦИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИИ,
СТРУКТУРНО РОДСТВЕННЫХ ЛИГНИНУ. ВОЗМОЖНЫЕ НАПРАВЛЕНИЯ

МИКРОБИОЛОГИЧЕСКОЙ ДЕГРАДАЦИИ ЛИГНИНА

Рассматриваемые ниже исследования энзиматических превращений
4>енольных соединений структурно родственных лигнину привели к по-
лучению информации, которая позволила высказать предположения о
механизмах превращений лигнина в ходе фунгиальной атаки.

Минами и Фукузуми " еще в 1956 г. указали на восстановительную
функцию Polystictus sanguines, обнаружив бензальдегид в продуктах
метаболизма бензойной кислоты. Позднее Фукузуми,и сотр.98 сообщили
о восстановительном превращении вератровой кислоты до вератрового
альдегида в результате инкубации с P. sanguines.

Хендерсон и соавт." исследовали превращения некоторых аромати-
ческих кислот под действием Polystictus versicolor и показали, что эти
грибы продуцируют внеклеточную спиртовую дегидрогеназу. P. versico-
lor восстанавливала т- и р-метоксибензойную, вератровую и β-нафтой-
ную кислоты до соответствующих альдегидов и спиртов. Только спирты
-были обнаружены среди продуктов энзиматических превращений о-ме-
токсибензойной и бензойной кислот. Соответствующие спирты были по-
лучены также из о- и р-оксибензальдегидов. 2,4-Диметоксибензойная,
фенилуксусная и ос-нафтойная кислоты не восстанавливались. Скорость
реакции изменялась в зависимости от положения и природы заместите-
ля в ароматическом кольце. Кроме того, показано, что 2,4-диметоксибен-
зойная, о-, т- и р-метоксибензойные кислоты в незначительной степени
деметилировались до соответствующих оксисоединений, а коричная,
бензойная, фенилуксусная кислоты гидроксилировались в /7-положение,
причем две последние только в ограниченной степени. Отмечена неко-
торая деградация ароматической структуры, которая имела место во
время метаболизма коричной, β-нафтойной, р- и о-оксибензойных кис-
лот.

Шимазоно и Норд 10° установили, что P. versicolor в аэробных усло-
виях восстанавливает р-метоксибензойную кислоту до соответствующе-
го альдегида и спирта. Раман и Шанмугасундарам 101 сообщили, что
культуры гриба Aspergillus niger в присутствии глюкозы превращают
до 50% бензойной кислоты, 35% о-аминобензойной кислоты и 10% р-
аминобензойной кислоты в соответствующие альдегиды, о- и р-Оксибен-
зойные кислоты не восстанавливались в альдегиды. Кроме того, в ана-
эробных условиях наблюдалось восстановление бензальдегида до бен-
зилового спирта, однако другие альдегиды не претерпевали аналогич-
ного превращения.

Хендерсон и соавт.102 установили, что Polystictus versicolor продуци-
рует внеклеточную спиртовую оксидазу, которая способна окислять пер-
вичные ароматические спирты (бензиловый спирт и его р-метокси, т-
метокси, 3,4-диметокси, 4-окси-З-метокси, о-окси- и р-окси-производные;
4-окси-З-метоксикоричный спирт, β-нафтилкарбинол) до соответствую-
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щих альдегидов и не окисляет вторичные спирты [1-(3,4-диметоксифе-
нил) этанол, 1-(4-окси-3-метоксифенил) этанол, 1-(4-метоксифенил) эта-
нол].

R"

OR'
(VII; R'=R"=H)
(VIII; R'=H; R"=CH2OH)
(IX, R'=CH3; R"=H)
(X, R'=CH3; R"=CH2OH)

В ходе исследования фунгиального метаболизма модельных соеди-
нений лигнина Хендерсон и соавт.103 установили, что мицелиальные
пленки P. versicolor метаболизировали гваяцилгликоль-р-гваяциловый
эфир (VII) и гваяцилглицерин^-гваяциловый эфир (VIII), но не мета-
болизировали вератрилгликоль^-гваяциловый эфир (IX) и вератрил-
глицepин-β-гвaяцилoвый эфир (X). Авторами отмечена способность гри-
ба метилировать фенольные ОН-группы. Так, в результате метаболизма
соединения (VII) образовывался вератровый спирт. Вератровый альде-
гид и вератровый спирт образовывались также в результате метаболиз-
ма /ьоксибензойной кислоты, протокатеховой кислоты, ванилина и ва-
нилилового спирта. Ни одно из соединений (VII) — (X) не окислялось
внеклеточной спиртовой оксидазой P. versicolor.

Ишихара и Миязаки 104 подвергли ванилиновую кислоту действию
неочищенного фермента из P. versicolor и выделили из реакционной сме-
си желтый кристаллический продукт с т. п. 225—226°. На основании ис-
следования УФ-, ИК-, ЯМР- и масс-спектров, а также анализа продук-
тов окислительной деградации установлено, что это соединение являет-
ся 2-метокси-6- (2'-метокси-4'-карбоксифенокси) -1,4-бензохиноном 105.

На основании результатов исследования энзиматической деградации
лигнина Фукузуми 7 0 · 1 0 6 высказал предположение о том, что лигнин раз-
рушается через гваяцилглицерин-р-эфирные соединения, β-оксиконифе-
риловый спирт и 4-окси-З-метоксифенилпировиноградную кислоту фер-
ментами Poria subacida. Фукузуми полагал, что соединения, подобные
ванилиновой кислоте, образуются в результате расщепления , боковой
цепи гваяцилпропанонов действием оксидазы грибов. Автором подтверж-
дено наличие гомогентизиновой кислоты в среде P. subacida.

Ишикава, Шуберт и Норд1 0 7 исследовали превращения ряда родст-
венных лигнину ароматических соединений в результате действия Poly-
oorus versicolor и Fomes fomentarius, относящихся соответственно к бо-
гатым и бедным фенолоксидазой видам грибов белой гнили. В качестве
субстратов использовали ванилиловый спирт (XI), гваяцилметилкарби-
нол, 4-окси-З-метоксифенилпировиноградную кислоту (XII), конифери-
ловый альдегид (XIII), конифериловый спирт (XIV), дегидродиизоэвге-
нол (XV), гваяцилглицерин (XVI) и его β-гваяциловый эфир (VIII) и не-
которые вератровые и р-оксифенильные аналоги этих соединений, а так-
же кислоту Эрдтмана (XVII), пинорезинол (XVIIIa) и симплокосигенол
(XVIII6).
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В результате проведенных исследований установлено, что в общем
случае гваяцильные соединения быстро метаболизировались, в то время
как р-оксифенильные соединения в тех же условиях были несколько бо-
лее устойчивы к фунгиальной атаке. Особенно быстро метаболизирова-
лись р-оксикоричная, р-оксифенилпировиноградная, феруловая и 4-ок-
си-3-метоксифенилпировиноградная кислоты, конифериловый альдегид,
конифериловый спирт, изоэвгенол и гваяцилглицерин. После инкубации
этих соединений с P. versicolor в течение 4—5 дней-только небольшие
количества субстрата обнаруживались в фильтратах. Однако количест-
во продуктов метаболизма, накапливающихся в реакционной среде,
было сравнительно невелико. Следует также отметить, что некоторая
часть всех использованных соединений превращалась в полимер. р-Ок-
сикоричная, р-оксифенилпировиноградная, феруловая и 4-окси-З-меток-
сифенилпировиноградная кислоты, кислота Эрдтмана, конифериловый
альдегид, конифериловый спирт, изоэвгенол, дегидродиизоэвгенол, сим-
плокосигенол и пинорезинол более легко полимеризовались грибом Р.
versicolor, чем F. fomentarius.

Основные продукты метаболизма, образующиеся из испытанных суб-
стратов, приведены в табл. 5.

Основными продуктами энзиматической деградации использованных
соединений являются ванилин и ванилиновая кислота, причем выход*
этих продуктов выше в случае деградации мономеров, а не димеров.
Поскольку авторы не сообщали о проведении контрольных эксперимен-
тов по инкубации только среды и субстрата, это дало основание предпо-
ложить 13, что ванилин и ванилиновая кислота могли образоваться в ре-
зультате аутоокисления образцов или загрязнения субстратов.

Как P. uersicolor, так и F. fomentarius превращали гваяцилглицерин-
β-гваяциловый эфир (VIII) в гваяцилглицерин (XVI) и гваякол. Обра-
зовавшийся таким образом гваяцилглицерин превращался далее обои-
ми грибами в ванилиновую кислоту через 4-окси-З-метоксифенилпирови-
ноградную кислоту (XII) и ванилин, однако кислота (XII) не обнару-
жена в культуральной среде P. versicolor.

Аналогичные превращения претерпевают р-оксифенильные произ-
водные (из р-оксикоричной и р-оксифенилпировиноградной кислот об-
разуются р-оксибензальдегид и р-оксибензойная кислота, а р-оксибен-
зальдегид окисляется до р-оксибензойной кислоты).

V
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Одновременно отмечалось, что при энзиматическом воздействии про-
исходит восстановление гваяцильных соединений. В частности, при дей-
ствии F. fomentarius в продуктах метаболизма ванилина, ванилиновой
кислоты, ацетованилона и изоэвгенола обнаружен ванилиловый спирт
(XI). Кроме того, р-оксибензойная, р-оксикоричная и феруловая кисло-
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Соединение относительно устойчиво по отношению к фунгиальной атаке.

ты, а также р-оксибенза'льдегид энзиматически превращались в соответ-
ствующий альдегид или спирт.

Отмечалось также, что действие обоих грибов приводит к частично-
му деметоксилированию ряда метилпроизводных исследованных р-окси-
фенильных и гваяциловых соединений с последующим окислением деме-
тилированных продуктов. (В ходе последующих исследований 1 O 8-U 1 от-
мечалось деметилирование различных метоксилированных ароматиче-
ских соединений, имевшее место в результате фунгиальной атаки.)

Результаты, полученные в ходе исследования энзиматической дегра-
дации лигнина и структурно родственных ему фенольных соединений
позволили Ишикаве, Шуберту и Норду предположить, что начальная
стадия фунгиальной атаки приводит к потере метоксильных групп и
расщеплению некоторых типов эфирной связи, а также деструкции ва-
нилинобразующих структур лигнина. Образовавшиеся в результате низ-
комолекулярные продукты деградируют далее до ванилиновой кислоты,
которая может затем метаболизироваться путем образования протока-
теховой кислоты.

Гваяцилглицерин^-арилэфирные звенья (XXIII) лигнина дегради-
руют через гваяцилглицерин (XVI), β-оксиконифериловый спирт (XXIV)
и 4-окси-З-метоксифенилпировиноградную кислоту (XII). Енольная фор-
ма этой кислоты, наиболее чувствительная к действию оксидаз, превра-
щается далее в ванилин, ванилиновую и щавелевую кислоты в резуль-
тате окислительного расщепления ее боковой пропановой цепи. Конифе-
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риловый альдегид и феруловая кислота, также образующиеся при раз-
рушении грибами лигнинов хвойной древесины, аналогичным образом
превращаются в ванилин и ванилиновую кислоту (схема 1). Однако

Схема 1

н,сон
НС—О—V х>— СН=СН—СН2ОН

К ' . Р " = Η или С -
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предположение о том, что соединения фенилпропановой структуры яв-
ляются промежуточными продуктами при деградации лигнина гриба-
ми белой гнили и значительная часть полимерного лигнина разрушает-
ся, как это показано на схеме 1, основывается, по сути дела, лишь на об-
наружении небольших количеств мономерных фенилпропановых соеди-
нений, образующихся при инкубации изолированного лигнина с грибами
белой гнили (см. раздел IV). Между тем небольшие количества этих
продуктов могли образоваться из «боковых групп» или второстепенных
структурных элементов, а не из блока фенилпропановых звеньев самого
полимера. Кроме того, несмотря на количественную важность арилгли-
церин^-арилэфирных связей в лигнине, имеющиеся данные свидетель-

\
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ствуют о том, что их расщепление может освободить только небольшое
количество мономерных ароматических соединений, даже если имеет ме-
сто значительная деполимеризация. (Например, при ацидолизе лигни-
на, который приводит к количественному расщеплению β-алкилариль-
ных эфирных связей, выход мономерных продуктов деструкции состав-
ляет ~ 11 % от лигнина1 1 2). Таким образом, можно заключить, что рас-
щепление арилглицерин-р-арилэфирных связей грибами белой гнили,
очевидно, не может привести к освобождению значительных количеств
мономерных продуктов.

Ишикава и соавт. и з исследовали также энзиматическую деградацию
гваяцилглицерина (XVI), β-оксикониферилового спирта (XXIV) и 4-ок-
си-3-метоксифенилпировиноградной кислоты (XII) очищенными фермент-
ными препаратами, полученными из комков мицелия и освобожденных
от мицелия культуральных фильтратов Forties fomentarius и Collybia ve-
lutipes. Эти препараты включали главным образом тирозиназу, фермент
типа лакказы и пероксидазу. Авторы наблюдали знзиматическое прев-
ращение соединений (XVI), (XXIV) и (XII) до ванилиновой кислоты че-
рез ванилин. Кроме того, показано образование (XII) из (XVI) и
(XXIV) и образование соединений типа (XXIV) из (XVI). Полученные
результаты рассматривались авторами как еще одно доказательство
того, что гваяцилглицерин, образующийся при энзиматической деграда-
ции гваяцилглицерин-р-арилэфирных звеньев лигнина хвойных, превра-
щается далее до ванилиновой и щавелевой кислот через β-оксиконифе-
риловый спирт, 4-окси-З-метоксифенилпировиноградную кислоту и ва-
нилин путем окислительного расщепленця пропановой боковой цепи.

Ишикава и Оки в8 исследовали деградацию ряда ароматических сое-
динений очищенными препаратами пероксидазы, полученными из хрена,
редиски и комков мицелия Collybia velutipes N8. Энзиматические прев-
ращения исследованных соединений под действием пероксидазы вклю-
чали как дегидрополимеризацию, так и окислительное расщепление бо-
ковых цепей. Примером первого процесса является образование поли-
меров из ванилина, ацетованилона, гваяцилметилкарбинола, эвгенола,
изоэвгенола, феруловой кислоты, кониферилового альдегида, гваяцил-
глицерина, кониферилового спирта, кислоты Эрдтмана, дегидродиизо-
эвгенола, пинорезинола, симплокосигенола и гваяцилглицерин-р-гвая-
цилового эфира, в то время как образование ванилина и дегидродивани-
лина из ванилилового спирта, ванилилэтилового эфира, β-оксиконифери-
лового спирта и 4-окси-З-метоксифенилпировиноградной кислоты явля-
ется примером второго процесса. (Следует отметить, что метиловые
производные всех этих соединений количественно регенерировались из
пероксидазных растворов после 2-часовой инкубации.) Авторы показали,
что процесс деградации ускоряется добавлением Н2О2 и увеличением
концентрации фермента и ингибируется нагреванием (оптимальный рН
5,3—5,5).

Ишикава и Оки 69 подвергли ряд ароматических эфирных соединений
(гваяцилглицерин-р-гваяциловый эфир, ванилилэтиловый эфир и вера-
трилметиловый эфир) действию очищенных ферментных растворов, по-
лученных из комков мицелия или свободных от мицелия культуральных
фильтратов Collybia velutipes N8 и Polyporus versicolor. Установлено,
что эти соединения претерпевают гидролиз эфирных связей, давая соот-
ветствующие спирты. В частности, после инкубации соединения (VIII) с
30-дневным культуральным фильтратом С. velutipes (25°, 2-е суток) 20—
30% субстрата превращалось в гваяцилглицерин. На основании иссле-
дования действия ингибиторов и рН на энзиматический гидролиз ва-
нилилэтилового эфира до ванилилового спирта авторы пришли к заклю-
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чению, что фермент, ответственный за гидролиз ароматических эфирных
соединений, не относится к металлсодержащим ферментам типа лакка-
зы и пероксидазы.

Фукузуми и Шибамото4Э исследовали деградацию вератрилглице- ί
рин-р-гваяцилового эфира частично очищенным ферментом из Poria su- "
bacida. Реакцию проводили при рН 4,0 в уксуснокислотном буферном
растворе при 30° в течение 2-х суток. Хроматографическое исследование
реакционной смеси показало наличие в ней гваякола и неидентифициро-
ванного соединения, которое, по мнению авторов, является вератрилгли-
церином или 3-окси-1-(3,4-диметоксифенил)-2-пропаноном.

В ходе последующих экспериментов Фукузуми и сотр.50 показали,
что количество гваякола, освобождающегося при действии на соедине-
ние (X) частично очищенного фермента из мицелия P. subacida, сущест-
венно увеличивается при проведении реакции в присутствии восстанав-
ливающего кофермента НАД-Н2 (восстановленный никотинадениндину-
клеотид). Авторы сообщили также об образовании гваяцилглицерина
(XVI) при инкубации соединения (X) с ферментом из P. subacida в при-

сутствии НАД-Н2. Последнее свидетельствует о том, что помимо энзи-
матического расщепления β-алкиларильной эфирной связи имеет место
пара-деметилирование. Однако идентификация соединения (XVI) осно-
вывалась исключительно на данных ТСХ с одной системой растворите-
лей и потому не может считаться адэкватной. Фукузуми и сотр.50 сооб-
щили, что использованная в данных экспериментах ферментная система
не атакует β-алкиларильную эфирную связь в соединениях, содержащих
α-кетогруппу, в то время как β-эфирная связь в этиленгликолевых и гли-
цериновых структурах расщепляется. Очевидно, наличие бензильной *
гидроксильной группы в боковой цепи является фактором, определяю- \
щим возможность расщепления β-эфирной связи ферментной системой
из P. subacida.

Авторы высказали предположение, что расщепление β-алкиларил-
эфирной связи может протекать по двум возможным механизмам. Один
из них — непосредственное гидроксилирование β-углеродного атома в
присутствии НАД-Н2 и кислорода. Эта реакция должна приводить к об-
разованию гваякола и вератрил- или гваяцилдиоксиацетона (последний
не был идентифицирован авторами, которые полагают, что он может
восстанавливаться до гваяцилглицерина). Второй — гидролитическая
реакция гваяцилглицерин^-гваяцилового эфира, который образуется
путем деметилирования исходного субстрата и является более гидроли-
зуемым по сравнению с вератрилглицерин^-гваяциловым эфиром. Низ-
кий выход гваякола при энзиматическом расщеплении соединения (X) в
присутствии НАД-Н2 (максимально 30%), по мнению Фукузуми и сотр.,
обусловлен стереоспецифичностью фермента по отношению к эритро- и
грео-формам вератрилглицерин^-гваяцилового эфира.

Таким образом, результаты рассмотренных исследований указывают
на возможность существования ферментной системы, которая расщеп-
ляет арилглицерин^-арилэфирные связи в лигнине. Однако отмеченные
выше методические недостатки проведенных экспериментов не позволя-
ют достаточно строго охарактеризовать эту ферментную систему и ме-
ханизм ее воздействия на лигнин.

Проведенные исследования свидетельствуют о способности грибов
белой гнили превращать гваяцилглицерин^-арилэфирные или, возмож-
но, другие структурные элементы лигнина в мономерные бензоидные со-
единения типа ванилина и ванилиновой кислоты. Дальнейшее исполь-
зование этих соединений грибами белой гнили может, очевидно, проте- k
кать различными путями, важной стадией которых является расщепле-
ние ароматического кольца. Опубликованы данные, свидетельствующие
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о том, что в результате фунгиального воздействия происходит процесс
расщепления ароматических ядер. Так, Фукузуми и сотр. сообщили, что
в результате инкубации бензойной кислоты с комками мицелия гриба
Polystictus sanguineus образуются ацетоуксусная (XXV) 97 и а-кетоглу-
таровая 114 кислоты, отсутствовавшие в контрольном опыте. Позднее
Фукузуми 115 наблюдал, что Poria subacida полностью метаболизирова-
ла гентизиновую кислоту (XXVI) до углекислого газа. Крауден " 6 уста-
новил, что Polyporus tumulosus полностью метаболизировал р-оксифе-
нилпировиноградную, /?-оксифенилуксусную, р-оксиминдальную, р-окси-
бензойную и протокатеховую кислоты и более чем на 50% гомогентизи-
новую (XXVII), 2,5-диоксиминдальную и гентизиновую (XXVI) кис-
лоты.

Мур и Тауэре И 7 · 1 1 8 исследовали деградацию фенилаланина и тиро-
зина дереворазрушающими грибами Schizophyllum commune, Sporobo-
lomyces roseus и Ustilago hordei. Инкубация мицелиальных пленок 5.
commune или промытых клеточных суспензий S. roseus с меченным в
кольце фенилаланином приводила к образованию 14СО2. Все три орга-
низма превращали меченый фенилаланин в коричную, бензойную, р-ок-
сибензойную и протокатеховую кислоты, кроме того, в продуктах мета-
болизма 5. commune обнаружены фенилмолочная и фенилуксусная кис-
лоты. Из трех исследованных грибов только 5. roseus обладала тираз-
ной активностью, превращая тирозин и р-кумаровую кислоту в /з-окси-
бензойную и протокатеховую кислоты. На основании полученных ре-
зультатов авторы предложили следующую последовательность энзима-
тической деградации фенилаланина и тирозина: первоначальное деами-
нирование до соответствующих производных акриловой кислоты, кото-
рые претерпевают окисление боковой цепи, в результате чего образу-
ются соответствующие С6—d-кислоты. Дальнейшее гидроксилирование
приводит к образованию протокатеховой кислоты (XXVIII) — конечного
ароматического соединения в этой последовательности, которое затем
претерпевает расщепление ароматического кольца. Наличие фенилмо-
лочной и фенилуксусной кислот в продуктах метаболизма S. commune
свидетельствует о существовании еще одного, помимо рассмотренного
выше, пути деградации фенилаланина этим организмом.

Хайдер и Флайг 47.119-121 установили, что в результате воздействия
Polystictus versicolor или ферментной системы, выделенной из этого гри-
ба, протокатеховая кислота (XXVIII) превращается в β-кетоадипино-
вую кислоту (XXIX). Согласно представлениям авторов, фунгиальное
превращение (XXVIII)-»-(XXIX) (схема 2) протекает по тому же меха-

нсоон
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низму, что и аналогичное превращение под действием бактерий 122-128. |
Согласно этому механизму, оксидаза протокатеховой кислоты катали- j
зирует первоначальное превращение протокатеховой кислоты в цис, цис- ι |
β-карбоксимуконовую кислоту (XXX), которая под действием специфи- * |
ческого лактонизирующего фермента может превращаться рядом бакте-
рий в лактон β-карбоксимуконовой кислоты (XXXI). И кислота (XXX),
и ее лактон (XXXI) превращаются затем в β-кетоадипиновую кислоту
(XXIX) в результате действия двух различных энзиматических систем,,
обозначаемых обычно как декарбоксилаза. j

Таким образом, данные, полученные в ходе рассмотренных выше экс- '
периментов, свидетельствуют о том, что разрыв ароматического кольца
происходит в том случае, когда соединение либо содержит, либо может
превратиться в орто- или пара-диоксифенольное производное. При мик-
робиологической деградации о-диоксифенолов расщепление может про-
текать по двум различным механизмам. Ароматическое кольцо может
разрываться либо между гидроксильными группами, либо непосредст-
венно рядом с гидроксильной группой. р-Диоксифенолы претерпевают
разрыв кольца между углеродным атомом, связанным с ОН-группой, к
соседним, содержащим заместитель углеродным атомом 1 2 7 · 1 2 8 .

Хайдер и Граббе 129 исследовали деградацию меченного 14С биосинте-
тического лигнина грибами белой гнили и пришли к заключению, что
этот процесс, по-видимому, не протекает через первоначальное расщеп-
ление С—С- или С—О-связей боковых цепей, а включает разрушение-
ароматических колец, еще связанных в полимере. Этот вывод, однако,,
пока не получил дополнительного экспериментального подтверждения.

Хайдер 48, суммируя исследования по микробиологической деструк- \
ции лигнина, пришел к выводу, что деградация лигнина дереворазруша-
ющими грибами включает следующие реакции, протекающие без уча-
стия фенолоксидаз: 1) укорочение боковой цепи, приводящее к образо-
ванию фенольных альдегидов, которые далее могут окисляться до соот-
ветствующих кислот или восстанавливаться до соответствующих спир-
тов; 2) расщепление метилэфирных связей и элиминирование метоксиль-
ных групп; 3) расщепление ароматических колец.

Одновременно в результате действия фенолоксидаз продукты распа-
да лигнина претерпевают окисление с образованием окрашенных поли-
меризатов. Первой стадией этого процесса является дегидрирование,
приводящее к образованию реакционноспособных радикалов и хинонов.

На основании результатов рассмотренных выше исследований Хри-
стиан и Оглесби 12 предложили схему деградации гваяцилглицерин-β-
арилэфирного звена лигнина хвойных древесных пород в результате
действия грибов белой гнили (схема 3).

Кирк, Харкин и Каулинг 130 исследовали действие двух грибов белой
гнили Polyporus versicolor и Stereum frustulatum на модельные соедине-
ния лигнина: гваяцилглицерин^-гваяциловый эфир (VIII) и вератрил-
глицерин^-гваяциловый эфир (X). Из двух испытанных грибов белой
гнили один (P. versicolor) является типичным, а второй (S. frustula-
tum)— нетипичным. По мнению авторов130, эти грибы представляют со-
бой крайние разновидности грибов белой гнили в отношении образова-
ния фенолокисляющих ферментов.

В результате проведенного исследования установлено, что в синтети-
ческой жидкой среде под действием обоих грибов гваяциловая модель
(VIII) превращается в ряд продуктов, преобладающим среди которых
является о,(/-диоксибифенильный дегидродимер (XXXII). Это бифе- А
нильное производное также было основным продуктом, когда соедине-
ние (VIII) инкубировали с лакказой. Вератровая модель (X) не изменя-
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лась ни обоими испытанными грибами в синтетической водной среде, ни
очищенной лакказой. Однако в среде, содержавшей древесную муку,
соединение (X) окислялось обоими грибами до а-гваякокси-р-оксипро-
пиовератрона (XXXIII). Специальные эксперименты по выяснению роли
древесной муки в процессе этого окисления показали, что лигнин в дре-
весине является субстратом для образования радикалов при действии
фенолоксидаз, продуцируемых обоими грибами.

Таким образом, то обстоятельство, что гваяцилглицерин-^-гваяцило-
вый эфир восприимчив к действию испытанных грибов белой гнили, в
то время как вератрилглицерин-р-гваяциловый эфир в тех же условиях
не изменяется, очевидно, свидетельствует о том, что фенольная ОН-груп-
па, а не β-эфирная связь непосредственно затрагиваются в данных куль-
туральных условиях. В пользу этого заключения говорит и тот факт, что
Д/.-глицерин-р-гваяциловый эфир в синтетической жидкой среде не из-
меняется обоими испытанными грибами. Наблюдавшаяся димеризация
гваяциловой модели до бифенильного дегидродимера под действием
обоих грибов белой гнили и превращение вератрилглицерин-р-гваяцило-
вого эфира в соответствующий вератрон в присутствии древесины пред-
ставляют собой окислительные реакции и, по мнению авторов, являются
результатом действия фенолоксидаз.

Кирк, Харкин и Каулинг94 продолжили исследование действия гри-
бов P. versicolor и 5. frustulatum, используя в качестве субстрата сирин-
гилгликоль-р-гваяциловый эфир (XXXIV). Сирингильная, а не гваяци-
ловая модель была выбрана с целью избежать катализируемых фено-
локсидазой реакций конденсации, включающих орто-положение по от-
ношению к фенольной ОН-группе.

В результате проведенного исследования установлено, что соедине-
ние (XXXIV) окислялось культуральными фильтратами P. versicolor
или цельными культурами S. frustulatum до а-гваякоксиацетосирингона
(XXXV). Культуральные фильтраты P. versicolor расщепляли алкилфе-
нильную С—С-связь в соединениях (XXXIV) и (XXXV) с образованием
гваякоксиацетальдегида (XXXVI) и гваякоксиуксусной кислоты

13*
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(XXXVII) соответственно. Сирингильные половины обоих исходных со-
единений превращались в 2,6-диметокси-р-бензохинон (XXXVIII) куль-
туральными фильтратами P. versicolor и цельными культурами 5. frus-
tulatum. Кроме того, показано, что лакказа, выделенная из культураль-
ных фильтратов P. versicolor, катализировала все вышеперечисленные
реакции.

Одновременно установлено, что цельные культуры P. versicolor и 5.
frustulatum восстанавливали гваякоксиацетальдегид и гваякоксиуксус-
ную кислоту до 2-гваякоксиэтанола, который накапливался в реакцион-
ной смеси и был устойчив к дальнейшим изменениям любым из этих ор-
ганизмов. Поскольку 2-гваякоксиэтанол образовывался при воздействии
цельных культур обоих грибов на сирингилгликоль-р-гваяциловый эфир
и α-гваякоксиацетосирингон, очевидно, что упомянутое выше алкилфе-
нильное расщепление может осуществляться цельными культурами.

Авторы предложили механизмы основных реакций, протекающих при
энзиматической деградации модельного соединения (XXXIV).

Окисление сирингилгликоль-р-гваяцилового эфира (XXXIV), катали-
зируемое фенолоксидазой грибов, приводит к образованию свободного
радикала, который может существовать по крайней мере в трех основ-
ных резонансных формах. Они аналогичны мезомерным формам Ra, Rc

и Rd кониферилепиртового радикала, образующегося, согласно теории
Фрёйденберга i 3 i, во время биосинтеза лигнина.

Ί
неон

МеО

где R =

'Me

Мезомерные формы образовавшегося радикала могут либо претерпе-
вать реакции диспропорционирования, либо комбинироваться, образуя
димерные продукты, которые далее могут изменяться реакциями стаби-
лизации. Образование бифенильных соединений посредством орто—орто
сочетания (включая радикальную форму 2), наблюдаемое с гваяциль-
ными соединениями " · 1 3 2 · 1 3 S , в значительной степени лимитируется ме~

\
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токсильными группами в сирингильных соединениях, т. е. доля радикала
в форме (2) в последующих реакциях незначительна 1 3 4 · 1 3 5 .

Механизм окисления сирингилгликоль-ф-гваяцилового эфира, явля-
ющегося по существу реакцией диспропорционирования, представлен на
схеме 4.

Схема 4

—CH2OR

Me MeC/ V T \>Me МеОХ N f - ^

чОМе

Начальной стадией рассматриваемого процесса является спаривание
феноксильной (/) и метиленхиноидной (3) радикальных форм. Распре-
деление электронной пары метоксильного кислородного атома на цикло-
гексадиеноновое кольцо приводит к элиминированию молекулы сирин-
гилгликоль-р-гваяцилового эфира (XXXIV). Последующая стабилиза-
ция образовавшейся молекулы достигается потерей протона от бензиль-
ного С-атома. Повторная ароматизация приводит к образованию а-гвая-
коксиацетосирингона (XXXV).

На схеме 5 приведен механизм образования гваякоксиацетальдегида
(XXXVI) из сирингилгликоль-р-гваяцилового эфира.

За начальным сочетанием радикалов в мезомерных формах (/) и (3)
следует элиминирование протона от бензильной ОН-группы на р-мети-
ленхиноидную половину. Последующее расщепление бензильно-кольце-
вой С—С-связи вызывает освобождение боковой цепи в виде альдегида
и повторную ароматизацию исходной молекулы.

Возможно также сочетание двух радикалов в мезомерной форме (3).
Образующийся дегидродимер в результате элиминирования обоих боко-
вых цепей дает З.З'ДБ'-тетраметокси-р-бифенол, превращающийся при
продолжающемся окислении в церулигнон. Последний в незначитель-
ных количествах обнаружен Кирком и соавт.94 в продуктах окисления
модельного соединения (XXXIV) лакказой из P. versicolor. Однако эта
реакция, по-видимому, ограничена стерическими препятствиями.

Аналогичный механизм (см. схему 6) предложен для объяснения об-
разования гваякоксиуксусной кислоты (XXXVII) из а-гваякоксиацето-
сирингона (XXXV).
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Схема 5
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После сочетания феноксильной (1) и р-метиленхиноидной (3) форм
радикала, образованных в результате окисления фенола, нуклеофиль-
ная атака молекулы воды на карбонильный заместитель в циклогекса-
диеноновом кольце вызывает его перемещение, давая гваякоксиуксус-
ную кислоту (XXXVII) и дифениловый эфир. Возможная комбинация
двух р-метиленхиноидных радикалов формы (3) с последующим элими-
нированием обоих боковых цепей приводит к образованию З.З'б.б'-тет-
раметокси-р-бифенола, который затем будет окисляться до церулигно-
на. Последний с незначительным выходом получен при окислении соеди-
нения (XXXV) лакказой из P. versicolor.

Образование 2,6-диметокси-р-бензохинона (XXXVIII) в результате
окислительного расщепления сирингилгликольф-гваяцилового эфира
представлено на схеме 7.
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Схема 7
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Начальной стадией этого процесса также является комбинация фе-
ноксильной и /?-метиленхиноидной форм радикала, приводящая к неста-
бильному циклогексадиеноновому производному (эта стадия на схеме?
не представлена). Распределение электронной пары одного из метоксиль-
ных кислородных атомов на циклогексадиеноновое кольцо приводит к
элиминированию молекулы сирингилгликоль-р-гваяцилового эфира. Да-
лее имеет место нуклеофильная атака водой на положение 4 циклогек-
садиенонового кольца с последующей потерей протона. Элиминирова-
ние гваякоксиацетальдегида с повторной ароматизацией диеноновой по-
ловины дает 2,6-диметоксигидрохинон, который энзиматически окисля-
ется до соответствующего р-хинона. Аналогичный механизм может объ-
яснить образование хинона из двух молекул а-гваякоксиацетосирингона.

Основываясь на результатах проведенных исследований, Кирк, Хар-
кин и Каулинг предложили так называемую «фенолоксидазную» гипоте-
зу, объясняющую механизм деполимеризации лигнина при действии гри-
бов белой гнили. Согласно этой гипотезе, фенолокисляющие ферменты,
которые присутствуют в гифах грибов белой гнили, и, по-видимому, ос-
вобождаются из них, когда последние проникают через древесную ткань,
катализуют окисление фенольных ОН-групп в макромолекуле лигнина.
Образующиеся нестабильные свободные радикалы затем стабилизиру-
ются реакциями, которые конденсируют некоторые лигнинные структуры,
но одновременно приводят к расщеплению углерод-углеродных связей
между боковыми цепями и кольцами других окисленных фенилпропа-
ноидных звеньев. Последующее удаление конечной алифатической час-
ти раскрывает дополнительные фенольные ОН-группы для продолжаю-
щегося деградирующего энзиматического окисления. Суммарный эф-
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фект таких процессов теоретически привел бы к фрагментации некото-
рых частей макромолекулы лигнина и к конденсации остатка.

Интересно отметить, что реакции алкилфенильного расщепления, ко-
торые лежат в основе предложенной гипотезы, были впервые обнаруже-
ны в ходе детальных исследований процесса биосинтеза лигнина. В ча-
стности Фрёйденберг и сотр.13в показали, что при энзиматической дегид-
рогенизации синапового спирта его конденсация останавливается на ди-
мере сирингарезиноле, причем продолжающееся энзиматическое воздей-
ствие приводило к разрушению этого димера. Обнаружение среди про-
дуктов деградации 2,6-диметокси-/?-бензохинона свидетельствует о том,
что имел место окислительный разрыв алкиларильных углерод-углерод-
ных связей. Кроме того, авторы сообщили о том, что при продолжитель-
ном окислении лигнина очищенной лакказой наблюдается образование
2-метокси-/?-бензохинона.

Сравнительно недавно в лигнине был обнаружен новый важный тип
структурных элементов—1,2-диарилпропан-1,3-диольные структуры 137~
13в. Механизм их образования в процессе энзиматической дегидрогени-
зации /ьоксикоричных спиртов, предложенный Лундквистом и Микше '",
включает алкилфенильное расщепление. Позднее этот механизм полу-
чил дополнительные экспериментальные подтверждения 139· '40. И нако-
нец, в ходе исследования продуктов энзиматического дегидрирования
пропиогваякона Пью и Коннорс U 1 идентифицировали трифенильное про-
изводное, образование которого, по всей вероятности, включает рас-
щепление алкилфенильной связи.

Основываясь на схематической формуле фрагмента молекулы лиг-
нина, предложенной Фрёйденбергом 1 3 ' · 1 4 2 , Кирк и соавт.94 подсчитали,
что 41% фенилпропановых звеньев лигнина чувствительны к описанным
выше типам расщепления.

С целью выяснить роль пероксидазы и лакказы в деградации лигни-
на Гирер и Опара 143 исследовали действие этих ферментов на мономер-
ные (гваякол, 2,6-диметоксифенол, глицерилариловые эфиры) и димер-
ные (1-гваяцил-2-сирингилэтанол, пинорезинол и дигидродегидродиизо-
эвгенол) фенольные соединения, структурно родственные лигнину. Фер-
ментативное воздействие приводило к образованию продуктов более вы-
сокого молекулярного веса в результате углерод-углеродного и углерод-
кислородного сочетания. Нефенольные модельные соединения не затра-
гивались обоими ферментными системами. Это свидетельствует о том,
что их каталитический эффект по своей природе окислительный, а не
гидролитический.

Результаты проведенного исследования свидетельствуют о том, что
обе ферментные системы функционируют главным образом, если не ис-
ключительно, катализируя окислительное сочетание с образованием
ариларильных или арил-О-арильных связей. Не получено доказательств
расщепления эфирных связей — продукты сочетания содержали все пер-
воначально присутствовавшие арилалкильные связи, в том числе метил-
арилэфирные и β-алкиларилэфирные связи. Таким образом, деградирую-
щий эффект исследованных ферментов должен быть связан с реакциями
окислительного сочетания, которые они катализируют. Выше были рас-
смотрены дегидрогенизационные реакции этого типа, вызываемые лак-
казой 94 или пироксидазой 1 4 4 · 1 4 5 на модельных соединениях р-окси-а-кар-
бонильного 94> 144 и р-окси-а-карбинольного 9 4 · 1 4 5 типов.

Идентичный состав продуктов сочетания, полученных с пероксида-
зой —Н 2 О 2 и с лакказой, а также отсутствие специфичности к субстра-
ту у обоих ферментов свидетельствуют о том, что только первая стадия
в этих реакциях — отделение водорода от фенольной гидроксильной
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группы — энзиматически катализируется. Последующие сочетания, оче-
видно, протекают самопроизвольно. Авторы указывают на то, что в ходе
проведенного исследования не получено никаких экспериментальных
доказательств непосредственного участия обоих ферментов в микробио-
логической деградации лигнина. Однако это не исключает возможности
того, что реакции окислительного сочетания могут составлять первую
ступень реакционной последовательности, в которой пероксидаза и лак-
каза в сочетании с другими, еще неизвестными ферментами принимают
участие в микробиологическом расщеплении лигнина.

Как отмечалось выше, Кирк и соавт., исследуя энзиматическую де-
градацию ряда модельных соединений лигнина, предположили сущест-
вование свободнорадикальных промежуточных соединений, которые мог-
ли возникать путем потери одного электрона от соответствующих фено-
лов. Кроме того, отмечалось, что подвергшаяся гниению древесина, по
данным спектрометрии ЭПР, характеризуется более высокой концентра-
цией свободных радикалов 75~77. С целью установить, какие структуры
лигнина образуют наиболее стабильные типы свободных радикалов при
энзиматической деградации, Колдвелл и Стилинк7 9 подвергли ряд си-
рингилпроизводных, в том числе бензиловые спирты (XXXIX—XLI,
XXXIV), α-карбонильные соединения (XLII—XLIV, XXXV), а также
сирингилпропан (XLV) и сирингарезинол (XLVI) окислению Н 2О 2 в при-
сутствии пероксидазы хрена и установили, что все эти соединения обра-
зуют стабильные промежуточные феноксильные радикалы.

н—с—он

МеО ОМе МеО
ОН ОН

(XXXIX, R=H)

(XL,R=Me)

(XLI, R = CH2—Me)

( XXXIV, R=CH2—С

(XLII, R = H)

(XL1II, R = Me)

(XLIV, R=CH 2—Me)

=У/ \
( XXXV, R = CH2—Оρ

ОМе

Me

MeO·

Результаты проведенных исследований показали, что феноксильные
радикалы наиболее легко образуются из α-карбонильных сирингилпро-
изводных, менее легко из α-карбинольных и α-алкилэфирных и медлен-
но из алкильных.

Для установления последовательности реакций, протекающих при
окислении испытанных соединений, реакционную смесь одновременно
контролировали методами ЭПР-спектроскопии и оптической спектро-
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-скопии. Кроме того, аликвоты реакционной смеси периодически подвер-
гали хроматографическому разделению в тонком слое для идентифика-
ции продуктов реакции. На основании полученных данных предложен
механизм энзиматического окисления исследованных соединений, при-
веденный на схеме 8.

Схема 8

Ме(У ]f OMe |
0 XXXIX- XLI, XXXIV

(XXXIXa-XLIa.XXXIVa) (XXXIX-XLI, XXXIV)

Димер

МеО' γ OMe
ОН

(XLI1-XLIV.XXXV)

R

С = О

С
МеО Ύ хОМе

О"

RCHO +

(XLVIII) Л 1 е 0 '

+ МеОН

OMe MeO Υ OMe
О

(XXXVIII) (XL1X)

Система пероксидаза — Н2О2, по-видимому, удаляет фенольный водо-
родный атом от субстрата. Образующийся в результате феноксильный
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радикал, который находится в равновесии с гидрохинон-эфирным диме-
ром (XLVII), затем диспропорционируется, давая фенол более высокого
окислительного потенциала. Этот второй фенол не претерпевает даль-
нейшего окисления, пока не будет использован весь исходный субстрат.
Указанный процесс повторяется до тех пор, пока не произойдет отщеп-
ления боковой цепи.

О
МеОч А .ОМе

ОМе

Таким образом, энзиматическое окисление протекает путем последо-
вательности раздельных стадий. Отделение водородного атома, по-ви-
димому, определяет скорость реакции при каждом изменении окисли-
тельного состояния субстрата. Диспропорционирование двух радикаль-
ных форм (или димерной формы) протекает быстро.

Следует отметить, что ранее Пью 132 сообщил о том, что Н2О2 и пер-
оксидаза способны гидроксилировать α-положение сирингилпропана.
Колдвелл и Стилинк показали, что это превращение также является од-
ноэлектронным переносом. Особенный интерес представляла исследован-
ная авторами реакция пероксидазы и Н2О2 с соединением (XXXIV).
Окисление этого соединения лакказой было подробно исследовано Кир-
ком и соавт. 13°, которые показали, что основным продуктом реакции яв-
ляется соединение (XXXV), в дополнение к которому образуется неко-
торое количество (XXXVI), (XXXVIII) и неидентифицированных про-
дуктов. Высокий выход соединения (XXXV), по-видимому, обусловлен
его нерастворимостью в воде, что препятствовало дальнейшему окисле-
нию. Поскольку Колдвелл и Стилинк проводили окисление соединения
(XXXIV) в водно-метанольной среде, в которой растворялось соединение
(XXXV), они получили высокий выход феноксильного радикала из
(XXXV) и соединения (XXXVIII).

Согласно схеме 8, хинон (XXXVIII) и альдегид (XLVIII) образуют-
ся на последней стадии окисления. Колдвелл и Стилинк высказали пред-
положение о существовании двух возможных способов распада радика-
лов, образующихся из соединений (XLII—XLIV, XXXV) — через проме-
жуточное соединение (XLIX) или его гипероксидный предшественник,
которые могут непосредственно давать соединения (XXXVIII) и
(XLVIII), а также через о-хинон (L), который мог быть источником не-
большого количества неидентифицированного красного вещества,

Позднее Янг и Стилинк 146 установили, что действие пероксидазы хре-
«а и Н2О2 на 4-замещенные 2,6-диметоксифенолы, а также ЛМР и ще-
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лочные лигнины из древесины лиственных пород приводит к образова-
нию феноксильных радикалов, причем лигнинные субстраты деградиру-
ют по тому же окислительному механизму, что и простые фенольные
субстраты.

Результаты рассмотренных исследований дают основание предполо-
жить, что наиболее чувствительными к фунгиальной атаке на макромо-
лекулу лигнина являются α-карбонильные функции в звеньях со сво-
бодным фенольным гидроксилом. Если распад всех звеньев лигнина со
свободной фенольной гидроксильной группой происходит по предложен-
ному Колдвеллом и Стилинком свободнорадикальному механизму, то
этим можно объяснить значительную деполимеризацию лигнина на ос-
нове серии одноэлектронных водородных отщеплений. В то же время не-
обходимо подчеркнуть 147, что основная стадия дегидрогенизации регу-
лируется структурой фенольного субстрата, а также окислительным по-
тенциалом фермента или химического окислителя. В биологических си-
стемах возможность протекания такого окисления в большей степени бу-
дет зависеть от таких факторов, как наличие соответствующих фермен-
тов, рН среды и наличие окислителей, например, О2 или Н2О2. Комби-
нация этих факторов определяет предпочтительное протекание и степень
полимеризационных или деградационных превращений при действии од-
ной и той же системы фермент—окислитель.

Сергеева и сотр.148 исследовали действие гриба бурой гнили Fotnito-
psis pinicola I на кониферин, глюкованилин, ванилин, сиреневый альде-
гид и конифериловый спирт. Сиреневый альдегид и ванилин не претер-
певали изменений в результате ферментативного воздействия, в то вре-
мя как конифериловый спирт окислялся до ванилина. Действие гриба
F. pinicola I на кониферин и глюкованилин приводило к разрыву β-фе-
нилглюкозидной связи с образованием кониферилового спирта и вани-
лина, соответственно. Эти первичные продукты распада претерпевали
дальнейшее окисление. Так, в продуктах разложения глюкованилина по-
сле 10 суток действия гриба наряду с ванилином обнаружены ванили-
новая кислота и еще две неидентифицированные кислоты. В продуктах
разложения кониферина после 10 суток обнаружены конифериловый
спирт и конифериловый альдегид, а при более длительном энзиматиче-
ском воздействии (45 суток), кроме того, ванилин.

Авторы полагают, что образование кониферилового спирта из кони-
ферина и ванилина из глюкованилина при действии гриба F. pinicola I
протекает через промежуточную стадию соответствующих нестабильных
феноксильных радикалов. Высказано предположение, что в случае воз-
действия гриба F. pinicola I на древесину разрыв β-фенилглюкозидных
лигноуглеводных связей может привести к образованию стабильных фе-
ноксильных радикалов. Последующее окисление кониферилового спир-
та до кониферилового альдегида и кониферилового альдегида до вани-
лина также, очевидно, протекает через свободнорадикальные промежу-
точные соединения. Наблюдавшееся при глубоком энзиматическом раз-
рушении древесины скачкообразное повышение концентрации парамаг-
нитных центров 77, по мнению авторов, может быть следствием окисле-
ния лигнинных структур и образования стабильных феноксильных ра-
дикалов. На основании содержания функциональных групп и данных
ИК-спектрального исследования древесины ели и березы на последова-
тельных стадиях их деградации грибом F. pinicola I Крейцберг и со-
авт. " 9 · 1 5 0 пришли к заключению об увеличении количества хингидрон-
ных структур в макромолекуле лигнина, причем биолигнин, выделенный
из деструктированной древесины ели, содержал больше этих структур
по сравнению с аналогичным препаратом из древесины березы.
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Заканчивая рассмотрение возможных направлений микробиологической деграда-
ции лигнина, следует сделать несколько общих замечаний.

Как уже отмечалось, имеются указания на наличие в дереворазрушающих гри-
бах ферментной системы, способной расщеплять арилглицерин-р-арилэфирные связи в
лигнине. Однако расщепление этих связей, очевидно, не приводит к высвобождению
значительных количеств мономерных продуктов, хотя и может вызывать деполимери-
зацию лигнина.

В связи с этим более обоснованной представляется выдвинутая Кирком так на-
зываемая «фенолоксидазная гипотеза», согласно которой фенолокисляющие ферменты
дереворазрушающих грибов катализируют окисление фенольных ОН-групп макромо-
лекулы лигнина. В результате этого образуются нестабильные свободные радикалы,
которые затем стабилизируются в ходе реакций, приводящих к конденсации некоторых
-лигнинных структур и одновременному расщеплению углерод-углеродных связей меж-
ду боковыми цепями и кольцами других окисленных фенилпропановых звеньев. По
мению Колдвелла и Стилинка, деструкция лигнина происходит в результате серии
одноэлектронных переносов, приводящей в конечном итоге к отщеплению боковой
цепи.

Следует иметь в виду, что вследствие разнообразия связей между мономерными
звеньями в лигнине 151 полное разрушение может не включать прямую атаку на каж-
дую из этих связей с результирующим освобождением низкомолекулярных фенольных
•соединений. Скорее может иметь место прямая атака на общие структурные элемен-
ты полимера, такие как ароматические ядра, а разрыв связей между фенилпропано-
выми звеньями может протекать косвенным путем. Однако имеющиеся данные недо-
статочны для того, чтобы сделать определенные выводы.

Таким образом, рассмотренные в настоящем обзоре работы, к сожалению, не
позволяют сделать однозначного вывода ни о ферментных системах, присутствующих
в дереворазрушающих грибах, ни о механизме микробиологической деградации лигни-
на, хотя очевидно, что решение этих проблем необходимо для успешной работы в тех
направлениях, о которых шла речь во введении.
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